Théorie des jeux : Cours 1

Jeux à somme nulle, Valeur d'un jeu

http://math.unice.fr/~ahrens

- 1 Définition (Jeu à somme nulle): Un jeu à somme nulle est la donnée de
 - un ensemble $X=\{x_1,\ldots,x_n\}$ de stratégies qu'on appelera les stratégies du joueur X
 - un ensemble $Y=\{y_1,\ldots,y_m\}$ de stratégies qu'on appelera les stratégies du joueur Y
 - une fonction $X \times Y \to \mathbb{R}$ qui à toute paire de stratégies $(x,y) \in X \times Y$ associe le paiement $r \in \mathbb{R}$ que le joueur Y payera a X.

Un tel jeu s'appelle *jeu à somme nulle* car la perte d'un joueur équivaut toujours au gain de l'autre, c'est-à-dire la somme des gain des deux joueurs est nulle.

2 Définition (Forme normale d'un jeu à somme nulle): Etant donné le jeu (X, Y, u), on représente les n stratégies de X en ligne et les m stratégies de Y en colonne, et donc obtient un tableau, par exemple :

$$\begin{array}{c|ccccc} & y_1 & y_2 & y_3 \\ \hline x_1 & -2 & +1 & -1 \\ x_2 & -2 & -4 & +1 \end{array}$$

qu'on appelle la forme normale du jeu (X, Y, u).

Vu que les coefficients u(x,y) de la matrice correspondent au gain de X — et donc à la perte de Y — le joueur X essaie de maximiser u(x,y), pendant que Y essaie de le minimiser. Plus précisément, pour chaque stratégie x_i que le joueur X peut choisir, le joueur Y essaie de choisir la stratégie y_j qui minimise $\{u(x_i,y_j) \mid 1 \leq j \leq m\}$.

On raisonne en terme de *risque* : chaque joueur réflechit sur le risque de perte pour chacune des stratégies à sa disposition. Pour l'exemple précédent :

	y_1	y_2	y_3	\min –	Maxmin
x_1	-2	+1	-1	-2	9
x_2	-2	-4	+1	-4	-2
max	-2	+1	+1		
Minmax		-2			

Joueur Y risque de perdre -2 (i.e. gagner 2) en choisissant y_1 , perdre +1 en choisissant y_2 (si X choisit x_1), et +1 en choisissant y_3 . Joueur X risque de gagner -2 (i.e. perdre 2) en choisissant x_1 (si Y choisit y_1), et perdre 4 en choisissant x_2 (si Y choisit y_2).

3 Définition: On appelle

$$Maxmin = -2$$

le max de la derniere colonne, qui est le Max des minima de chacune des lignes. De même, on appelle

$$Minmax = -2$$

le min de la derniere ligne, qui est le Min des maxima de chacune des lignes.

4 Définition (Jeu à stratégie pure): Si pour un jeu (X, Y, u) on a Minmax = Maxmin, on dit que le jeu *admet une valeur en stratégie pure*.

Dans ce cas, on appelle Minmax la valeur du jeu.

Le jeu de l'éxemple en haut admet une valeur en stratégie pure.

5 Exercice: Modifier l'éxemple de Déf. 2 tel que le jeu n'admette plus une valeur en stratégie pure.

But : savoir repondre à

- Qu'est-ce qu'un jeu?
- Qu'est-ce que la forme normale d'un jeu, et comment l'interpreter?
- Etant donné un jeu sous forme normale, admet-il une valeur en stratégie pure?